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On the Helmholtz Potential Metric: The Isotherm
Length-Work Theorem
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In this paper we introduce the Isotherm Length-Work theorem using the
Helmholtz potential metric and the virial expansion of pressure in inverse power
of molar volume. The theorem tells us what length of a thermodynamical system
described by equation of state through virial expansion along isotherms actually
is with such a metric. We also give explicit solutions for thermodynamic length
along isotherms in the case of first, second and third order expansion.

KEY WORDS: Geometry of thermodynamics; equilibrium thermodynamics;
thermodynamic length.

1. INTRODUCTION

Gibbs(5) introduced in his work a geometrical interpretation of equilibrium
thermodynamics which was followed by Caratheodory(3,4) who proved that
the state space is endowed with the canonical contact structure that under-
lines the first law of thermodynamics (energy balance law). Different rep-
resentations of this structure in a canonical (D’Arbois) chart are related to
different forms of the energy balance law written through internal energy,
entropy, Helmholtz free energy, etc.(7,9)

Hermann(6) and Mrugala(7) suggested that the “extended phase space”
of a homogeneous thermodynamic system endowed with the contact
structure does represent the natural geometrical space for description of
equilibrium thermodynamics.

Later, a thermodynamic metric was explicitly introduced by
Weinhold(18) and, from a different point of view, by Ruppeiner.(10) These

1Department of Mathematics and Statistics, Portland State University, PO Box 751,
Portland, OR 97207-0751, USA; e-mail: emanus@pdx.edu

737

0022-4715/05/0800-0737/0 © 2005 Springer Science+Business Media, Inc.



738 Santoro

metrics were defined on the space of thermodynamic states of a system
using different thermodynamic potentials, respectively, internal energy U
and entropy S, and set of extensive variables, respectively (S,V ,N1, . . . )

and (U,V,N1, . . . ). It became clear, then, that a physical interpretation of
path-length between two states had to be investigated. These studies were
conducted using mostly the internal energy formalism of a single com-
ponent system(14–17) and some results were obtained for systems at con-
stant entropy, volume, pressure and temperature.(14–16) In particular, it was
shown(14) that, using Weinhold metric for an Ideal gas, a reversible process
at constant temperature gives length equal to zero. Thus, the following
question arises: what is the meaning of thermodynamic length of a quasi-
static process along isotherms even for more complex systems in which
inter-particle interaction occurs?

It is important to note that, in the molar energy representation, the
temperature T is function of the extensive variables s and v, namely T =
T (s, v), and, therefore, analytical procedures become considerably awk-
ward. The standard approach, then, would be to consider the Helmholtz
free energy as thermodynamic potential obtained by Legendre transforma-
tion of the energy function with temperature and volume as independent
variables and, then, define a new metric as the Hessian of the Helmholtz
free energy. Thus, this manuscript will unfold in a sequence of two main
points. First, we shall define and study the Helmholtz potential metric of
a two-dimensional thermodynamic system. In particular, we shall see that
the tangent space at any point on the equilibrium surface is the Lorentzian
space E1,1. Second, we shall study path-length along isotherms using the
virial expansion in inverse power of molar volume.

Let’s, now, introduce the concepts of contact structure, thermody-
namic metric and thermodynamic length.

We shall define the extended phase space as a (2n + 1)-dimensional
manifold P endowed with the contact structure given by a differential
1-form θ such that(6,7)

θ ∧ (dθ)n �=0,

where θ is called the contact form.
In a local (D’Arbois) chart (�, (Yi,Xi)) with i =1, . . . , n, any contact

form θ can be represented as(1)

θ =d�−
n∑

1

YidXi.

A Legendre manifold S ⊂P is a n-dimensional maximal integral sub-
manifold of the Pfaff equation θ =01. On such a manifold we consider �
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to be the thermodynamic potential, Yi = ∂�/∂Xi to be the intensive vari-
ables and Xi to be the extensive variables with i = 1, . . . , n. Equilibrium
states form such a maximal integral surface of contact form θ in the space
P by the choice of n extensive variables and thermodynamic potential
as function of these variables. Equilibrium surface is then geometrically
described by constitutive relation � = �(Xi). Another choice of exter-
nal variables and thermodynamic potential leads to another equilibrium
surface corresponding, in general, to another constitutive relation.(7,9)

On such equilibrium surface, thermodynamic metrics are defined by
the constitutive relation �=�(Xi). The general form is given by

η� = ∂2�

∂Xi∂Xj
dXi ⊗dXj

and the corresponding matrix representation is denoted by Mrugala(8)

η�ij
= ∂2�

∂Xi∂Xj
.

1.1. Thermodynamic Metrics

Weinhold introduced a metric(18) in the space of thermodynamic
states as second derivative of internal energy with respect to extensive
variables Xi and Xj , namely ηUij

= ∂2U/∂Xi∂Xj . In a general setting,
constitutive relation U = U(X1, . . . ,Xn) represents the energy surface in
which, for example, X1 = S, X2 = V , etc., where S is the entropy and V

is the volume of our system. Such a metric gives us a way to define dis-
tances and angles and, therefore, it enables us to study the geometry of the
energy surface.

Ruppeiner, instead, introduced a metric(11) by the choice � = S as
thermodynamic potential and defined it as second momenta of entropy
with respect to the fluctuations, namely ηSij

=−(∂2S/∂Xi∂Xj ). In this case
constitutive relation S = S(X1, . . . ,Xn) represents the entropy surface in
which, for example, X1 =U , X2 =V , etc.

As we have already mentioned, a different choice of thermodynamic
potential and extensive variables leads to a different equilibrium surface
geometrically described by a certain constitutive relation. Since the most
familiar thermodynamic potentials are the Legendre transformations(2)

of the internal energy, namely Helmholtz free energy, Enthalpy, Gibbs
free energy, and since this manuscript is concerned with the meaning of
thermodynamic length which it has been studied mostly using Weinhold
metric,(12–17) we shall focus our attention to the energy surface and its
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geometry. We shall see that Legendre transformations of a thermodynamic
potential change the “nature” of the thermodynamic state space.

1.2. Thermodynamic Length

The metric ηUij
can be interpreted locally as the distance(14) between

the energy surface and the linear space tangent to this surface at some
point where ηUij

is evaluated. Indeed, let’s denote by coordinates
(X0

1, . . . ,X0
n) a particular energy state. The tangent space is attached to

the energy surface at point (U0,X0
1, . . . ,X0

n). If we move away a little to
a new energy state (X1, . . . ,Xn) then the availability(12,14) or the available
work(12) of the system is the distance between the point on the surface
(U,X1, . . . ,Xn) and the tangent space. This is naturally a local interpre-
tation since it requires just small displacements, like for fluctuations, from
the given point (U0,X0

1, . . . ,X0
n) on the surface.

On the other hand, we could study thermodynamic length taking the
metric ηUij

globally. In this situation we consider a path φ on the energy
surface between two states a0 and a1 and study the length of the path

La0a1 =
∫ a1

a0

[∑

i,j

ηUij
dXidXj

]1/2

.

It was shown(14) that the thermodynamic length L does, in general,
represent the change in mean molecular velocity depending on the partic-
ular nature of the thermodynamic process defining the path φ and that its
dimension is square root of energy. But thermodynamic length was explic-
itly studied(14) just in the Ideal case. In particular, it was found that, for a
reversible adiabatic Ideal Gas from state (p0, V0) to state (p1, V1), length
represents the change in flow velocity of a gas undergoing an isentropic
expansion, like in rarefaction waves, and it is given by Salamon et al.(14)

Ls = 2
γ −1

√
γp0V0



1−
(

p1

p0

) γ−1
2γ





with γ = Cp

Cv
.

Moreover, in our previous manuscript, we have shown an explicit(17)

relation between thermodynamic length and work for an isentropic Ideal
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and quasi-Ideal Gas along isotherms, namely

Ls =
√

1
RT

W.

Such a relation was considered to be a way to measure the amount of
work done by the system along isotherms. But its interpretation in rela-
tion with work turned out to be much more complex than what we had
expected. Indeed, we realized that such a case was the trivial one, namely
that length in an isentropic Ideal and quasi-Ideal Gas along isotherms is
zero, and gave a generalization of that relation no longer at constant tem-
perature.(15) In particular, we found that thermodynamic length of an isen-
tropic Ideal or quasi-Ideal Gas measures the difference of the square roots
of the energies of two given states, namely(15)

Ls =2

√
cp

R

[√
u2 +Win −√

u2

]
=2

√
cp

R

[√
u1 −√

u2

]

and

−Ls =2

√
cp

R

[√
u2 −

√
u2 −Wout

]
=2

√
cp

R

[√
u2 −√

u1

]
,

where Win and Wout are the work done on the system and the work done
by the system. (Note that we require length to be positive). Therefore ther-
modynamic length is zero if there is no work.

So far we have been able to physically interpret thermodynamic length
for an isentropic Ideal and quasi-Ideal Gas. As a special case we have
shown that along isotherms such a length vanishes. Thus, the following
question arises, namely: what is the physical meaning of length for an
isothermal thermodynamic system?

Remark 1. Note that we are no longer considering thermodynamic
systems at constant entropy. Just constant temperature.

Naturally, we cannot use the same mathematical approach using
Weinhold metric on the equilibrium surface described by constitutive rela-
tion u=u(s, v). We would like to change set of extensive variables in such
a way to include temperature as one of them. The standard way to do
that is to consider the Legendre transformation of internal energy which
replaces the molar entropy with the temperature. Therefore, we would
need to consider the molar Helmholtz free energy with corresponding
energy surface described by constitutive relation f = f (T , v) as the natu-
ral setting for such a problem.
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2. THERMODYNAMIC LENGTH WITH THE HELMHOLTZ POTENTIAL

METRIC

We have already mentioned that thermodynamic metrics are geometri-
cally defined on Legendre submanifolds (equilibrium surfaces) of the ther-
modynamical phase space by the choice of a set of extensive variables
and of a thermodynamic potential like internal energy, entropy, Helmholtz
free energy, enthalpy, etc. By such a choice we are able to study, through
constitutive relation, the geometrical structure of that particular equilib-
rium surface. It is on such equilibrium surface that we can define a metric
as second derivative of the thermodynamic potential with respect to the
extensive variables. All these metrics are naturally well-defined on the cor-
responding Legendre submanifold through Legendre transformation.

Here we will consider the Helmholtz free energy as thermodynamic
potential and we will study the metric of a two-dimensional thermody-
namic system defined by such a choice. We shall see that the equilibrium
surface defined by constitutive relation f =f (T , v) has, as a tangent space
at any point, the Lorentzian space E1,1 since the eigenvalues of the rela-
tive matrix metric have opposite sign, as long as we avoid points of degen-
eracy. The length of any vector on such a space is either positive, zero or
pure imaginary. Naturally, the length of any curve (thermodynamic pro-
cess) on the equilibrium surface can be parametrized and, thus, can be
expressed in terms of rate of change of position vectors with respect to the
parameter. Such vectors belong to the Lorenztian space at any point. For
paths in a constant direction, length is either positive, zero or pure imagi-
nary. We will define a volume-like vector, a temperature-like vector and a
null vector on the Lorenztian space E1,1 at each point q on the surface S.

We shall see that length is computed in its generality using virial
expansion of pressure in inverse molar volume and just in the Ideal and
quasi-Ideal case is proportional to work along isotherms.

It is known that the Helmholtz (molar) potential f is the Legendre
transformation of the molar internal energy u that replaces the molar
entropy s by the temperature T as independent variable. That is

f =f (T , v)

Now, since f =u−T s, we have the following differential,(2)

df =−s dT −p dv
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with
(

∂f

∂T

)

v

=−s

and
(

∂f

∂v

)

T

=−p.

If we define the metric ηfij
= ∂2f (x)/∂xi∂xj , we have

ηfij
=
( −cv

T
− α

kT

− α
kT

1
vkT

)
, (2.1)

where

(1) cv is the molar heat capacity at constant volume:

cv =T

(
∂s

∂T

)

v

,

(2) cp is the molar heat capacity at constant pressure:

cp =T

(
∂s

∂T

)

p

,

(3) α is the thermal coefficient of expansion:

α = 1
v

(
∂v

∂T

)

p

,

(4) κT is the isothermal compressibility:

κT =−1
v

(
∂v

∂p

)

T

.

Local conditions of stability require that the Helmholtz free energy be
a concave function of the temperature and a convex function of the vol-
ume.(2) It is easy to see that det (ηfij

) = −cp/T vκT = cp/T (∂p/∂v)T and
that the characteristic equation of (2.1) is given by
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λ2 +
(

cv

T
− 1

vκT

)
λ− cp

T vκT

=0. (2.2)

It follows that the eigenvalues are given by

λ1/2 = 1
2

[(
1

vκT

− cv

T

)
±

√



]
, (2.3)

where


=
(

1
vκT

+ cv

T

)2

+4
(

α

κT

)2

>0. (2.4)

Now, since 
 is always positive, the eigenvalues λ1/2 are both real and dis-
tinct and, since det (ηij )=λ1λ2, then we have the following result

Lemma 1. Let T > 0. Since cp − cv = vT α2

κT
, then if cp > 0 and

(
∂p
∂v

)T <0 then det (ηfij
)<0 and λ1 <0, λ2 >0.

Let’s assume that the eigenvalues are both non-zero. Then the met-
ric (2.1) is diagonalizable. Since ηfij

is a real symmetric matrix, it can be
diagonalized by an orthogonal change of basis of the tangent space TqS

at point q to the surface S. In the eigenvector basis, the shape of the
equilibrium surface S becomes obvious. Direction along eigenvectors with
negative eigenvalues have curvature downward and direction with posi-
tive eigenvalues have upward curvature. Moreover, each eigenvector would
represent a particular perturbation of the surface. Naturally, both eigen-
values and eigenvector would depend on the point (T , v). It follows that
the matrix of eigenvalues is given by

�ij = 1
2

(
( 1
vκT

− cv

T
)−√


 0
0 ( 1

vκT
− cv

T
)+√




)
(2.5)

The corresponding eigenvectors corresponding to λ1 and λ2 are given by

ξ1 =
(

1
− κT

2α
[( 1

vκT
+ cv

T
)−√


]

)
(2.6)

and

ξ2 =
(

κT

2α
[( 1

vκT
+ cv

T
)−√


]
1

)
(2.7)
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Now, since the two eigenvalues are distinct then the set [ξ1, ξ2] is lin-
early independent.

Let’s denote, now, the matrix P = (ξ1, ξ2). In particular,

P =
(

1 κT

2α
[( 1

vκT
+ cv

T
)−√


]
− κT

2α
[( 1

vκT
+ cv

T
)−√


] 1

)
(2.8)

and the inverse P −1 is given by

P −1 = 1

1+ κ2
T

4α2 [( 1
vκT

+ cv

T
)−√


]2

×
(

1 − κT

2α
[( 1

vκT
+ cv

T
)−√


]
κT

2α
[( 1

vκT
+ cv

T
)−√


] 1

)
. (2.9)

It is evident that ηfij
can be decomposed in the very special form

ηfij
=P�ijP

−1, (2.10)

where P is a matrix composed of eigenvectors, P −1 is its inverse and �ij

is the matrix of eigenvalues of ηfij
.

Let’s, now, define with Eλ1 and Eλ2 the eigenspaces of λ1 and λ2.
Naturally, the basis for the one-dimensional eigenspaces Eλ1 and Eλ2 are
given by ξ1 and ξ2.

If we denote by |ξi |, i = 1,2, the length of the eigenvectors, then
we can normalize them obtaining a orthonormal basis for the two-
dimensional tangent space at any point q on the surface considering the
important fact that normalizing a vector of imaginary length can require
multiplication by a negative scalar

B =
(

ξ1

|ξ1|
,

ξ2

|ξ2|
)

= (ξ−
1 , ξ−

2

)
(2.11)

The tangent space TqS at any point q on S is a vector space endowed
with a pseudo-Riemannian metric given by

�ij = 1
2

(
( 1
vκT

− cv

T
)−√


 0
0 ( 1

vκT
− cv

T
)+√




)
. (2.12)
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Such a metric at any point on the domain, say (T0, v0), is equivalent to a
Lorentz metric of the form

Λij |(T0,v0) =
(−1 0

0 1

)
. (2.13)

The tangent space TqS at a point q on the surface S is, therefore, a
Lorentzian two-space and denoted by E1,1.

This implies that the length of any vector is either positive, zero or
pure imaginary.

Now, it is known that the equilibrium surface defined by the energy
function u=u(s, v) has a metric at any point of its domain of the form

�ij |(s0,v0) =
(

1 0
0 1

)
.

Moreover, the Helmholtz potential f is the Legendre transformation of u,
which replaces the molar entropy s by the temperature T =∂u/∂s. Then, it
is exactly the one variable Legendre transformation which change the sig-
nature of the metric. In other words, it locally change the Euclidean metric
in a Lorentzian one and viceversa.

Remark 2. Note that the same argument is true in case we would
consider Enthalpy as thermodynamic potential which is the Legendre
transformation of internal energy that replaces the molar volume by the
pressure as independent variables. In our future work, we’ll show that also
such a metric is Lorentzian. As we will show that, given Gibbs free energy
as thermodynamic potential, which is a double-variable Legendre transfor-
mation, the metric related to it has signature (−1,−1) which is equivalent
to the Euclidean signature (1,1). As far this paper is concerned we are just
considering length along isotherms and, therefore, we leave such a remark
as introduction to future work.

Let’s, thus, define positive length to be volume-like and pure imagi-
nary to be temperature-like. We stress again that pure imaginary length is
temperature-like due to the one variable Legendre transformation which
replaces s with T .

From now on, we’ll study length along isotherms. An isothermal pro-
cess typically occurs when a system is in contact with an outside thermal
reservoir, and the system changes slowly enough to allow it to adjust to
the temperature of the reservoir.
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Now, considering

La0a1 =
∫ a1

a0




∑

i,j

ηfij
dXidXj




1/2

(2.14)

to be the length of a path between two states a0 and a1, the thermody-
namic length with the Helmholtz potential metric becomes

L=
∫ [

−cv

T
(dT )2 −2

α

κT

dT dv + 1
vκT

(dv)2
]1/2

(2.15)

=
∫ ξf

ξi

[
−cv

T

(
dT

dξ

)2

−2
α

κT

dT

dξ

dv

dξ
+ 1

vκT

(
dv

dξ

)2
]1/2

dξ. (2.16)

Using (2.12), we have that

(dL)2 =λ1(dT )2 +λ2(dv)2. (2.17)

The expression above is not positive definite. Therefore the usual concept
of length has to be abandoned.

In particular, as we stated previously, we consider constant directional
paths in which we also allow zero and pure imaginary length. As mention
above, we will restrict our attention to the study of thermodynamic length
at constant temperature which is given by

LT =
∫ √

1
vκT

dv =
∫ √

(−∂p

∂v
)T dv =

∫ √
− T

cp

det ηijf
dv =

∫ √
η22 dv.

(2.18)

3. THE ISOTHERM LENGTH-WORK THEOREM

The Isotherm Length-Work Theorem uses the virial expansion in
inverse power of molar volume which is given by,(2)

p = RT

v
+ RT B(T )

v2
+ RT C(T )

v3
+ RT D(T )

v4
+· · · , (3.1)

where B(T ), C(T ), etc. are the virial coefficients.
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If we expand p up to the nth power, then, we might express (3.1) as

p = RT

v
+ RT B(T )

v2
+ RT C(T )

v3
+ RT D(T )

v4
+· · ·+ RT Y(T )

vn−1
+ RT Z(T )

vn
,

(3.2)

where Y (T ) and Z(T ) are the (n−1)th and the nth virial coefficients.
Now, since the temperature is constant, say T =T0, let’s set B(T0)=B,

C(T0)=C, etc. and so, recalling the second integral in (2.18), we have

LT =
∫ √

(−∂p

∂v
)T dv

=
∫ √

RT

v2
+ 2RT B

v3
+ 3RT C

v4
+· · ·+ (n−1)RT Y

vn
+ nRT Z

vn+1
dv.

(3.3)

Theorem 1. Isotherm Length-Work Theorem.
Let T and v be non-zero. Then, along isotherms, thermodynamic

length is given by any of the following:

LT = 1√
RT



n

∫
p dv√

1+ 2B
v

+ 3C

v2 +· · ·
− (n−1)

∫
RT dv

v

√
1+ 2B

v
+ 3C

v2 +· · ·

− (n−2)

∫
RT B dv

v2
√

1+ 2B
v

+ 3C

v2 +· · ·
− · · ·



 (3.4)

= n√
RT



 W√
1+ 2B

v
+ 3C

v2 +· · ·

−
∫

Bv2n−4 +3Cv2n−5 +· · ·
v

n−1
2 [vn−1 +2Bvn−2 +3Cvn−3 +· · · ]

3
2

W dv

]

−
√

RT




∫

(n−1)dv

v

√
1+ 2B

v
+ 3C

v2 +· · ·

+
∫

(n−2)Bdv

v2
√

1+ 2B
v

+ 3C

v2 +· · ·
+ · · ·



 (3.5)
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=
√

RT




∫

dv

v

√
1+ 2B

v
+ 3C

v2 +· · ·
+
∫

2B dv

v2
√

1+ 2B
v

+ 3C

v2 +· · ·

+
∫

3Cdv

v3
√

1+ 2B
v

+ 3C

v2 +· · ·
+ · · ·



 , (3.6)

where W is work.

Proof. Consider (3.3),

LT =
∫ √

RT

v2
+ 2RT B

v3
+ 3RT C

v4
+· · ·+ (n−1)RT Y

vn
+ nRT Z

vn+1
dv. (3.7)

It can be rewritten as

LT =
∫ RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1√
RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1

dv

=
∫ 1

v
[ RT

v
+ RT B

v2 + RT C

v3 +· · ·+ RT Y

vn−1 + RT Z
vn ]

√
RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1

dv

+
∫ 1

v
[ RT B

v2 + RT C

v3 +· · ·+ RT Y

vn−1 + RT Z
vn ]

√
RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1

dv

+
∫ 1

v
[ RT C

v3 +· · ·+ RT Y

vn−1 + RT Z
vn ]

√
RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1

dv

+· · ·+
∫ 1

v
[ RT Z

vn ]
√

RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1

dv,

which gives

LT =
∫

p dv

v

√
RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1

+
∫

(p − RT
v

)dv

v

√
RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1
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+
∫

(p − RT
v

− RT B

v2 )dv

v

√
RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1

+· · ·+
∫

(p − RT
v

− RT B(T )

v2 − RT C(T )

v3 −· · ·− RT Y(T )

vn−1 )

v

√
RT

v2 + 2RT B

v3 + 3RT C

v4 +· · ·+ (n−1)RT Y
vn + nRT Z

vn+1

Therefore, after rearranging, and considering that

√
RT

v2
+ 2RT B

v3
+ 3RT C

v4
+· · ·+ nRT Z

vn+1
=

√
RT

v

√
1+ 2B

v
+ 3C

v2
+· · ·+ nZ

vn−1

we get

LT = 1√
RT

[
n

∫
p dv√

1+ 2B
v

+ 3C

v2 +· · ·
− (n−1)

∫
RT dv

v

√
1+ 2B

v
+ 3C

v2 +· · ·

−(n−2)

∫
RT Bdv

v2
√

1+ 2B
v

+ 3C

v2 +· · ·
− · · ·

]
, (3.8)

where we drop the nth integral for simplicity.
Considering the first integral, we can integrate by parts considering

variables ξ and W , (work), such that

ξ = 1√
1+ 2B

v
+ 3C

v2 +· · ·+ nZ

vn−1

dW =p dv

and, since

dξ

dv
= Bv2n−4 +3Cv2n−5 +· · ·

v
n−1

2 [vn−1 +2Bvn−2 +3Cvn−3 +· · · ]3/2
,

then we have
∫

p dv√
1+ 2B

v
+ 3C

v2 +· · ·
= W√

1+ 2B
v

+ 3C

v2 +· · ·

−
∫

Bv2n−4 +3Cv2n−5 +· · ·
v

n−1
2 [vn−1 +2Bvn−2 +3Cvn−3 +· · · ]

3
2

W dv. (3.9)

Substituting (3.9) into (3.8), we get our final result (3.5). (3.6) is
immediate from (3.4).
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Remark 3. Note that while (3.5) gives evidence that thermodynamic
length is also work, (3.6) is easier for computational purposes.

Let’s now look at specific cases. In particular, let’s look at the first,
second and third expansion; i.e. n=1, n=2 and n=3.

For n=1, we have the Ideal (or quasi-Ideal) case.

Corollary 1. Let

p = RT

v
. (3.10)

Then, along isotherms,

LT = 1√
RT

W =
√

RT ln
(

v2

v1

)
, (3.11)

where W is work given by W = ∫ v2
v1

pdv.

Proof I. In this case, all the virial coefficients are zero and n=1. So,
from (3.5) and (3.6), we get (3.11) immediately.

During an isothermal process, the internal energy of an Ideal gas
remains constant because the gas temperature does not change. Thus, du=
0, which implies, by the first law of thermodynamics, that if we do some
work on a gas to compress it, the same amount of energy will appear as
heat transferred from the gas as it is compressed. Thermodynamic length,
in this case, seems to be a measure of them up to a constant.

Always along isotherms, it is easy to show that thermodynamic length
is work also in the case in which we consider the volume occupied by mol-
ecules (quasi-ideal).

In particular, if p =RT/v −b then (3.11) still holds.

Proof II. We look at the case in which

(
∂2f

∂v2

)

T

= 1
RT

[(
∂f

∂v

)

T

]2

, (3.12)

where f is the molar Helmholtz potential. Naturally, (3.12) is equivalent
to

(
∂p

∂v

)

T

+ 1
RT

p2 =0 (3.13)
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since (∂f/∂v)T =−p. Now, (3.13) is a separable first order ordinary differ-
ential equation whose solution is given by

p = RT

v −b

from which we have f =−RT ln |v −b|+h, where h is any constant. Then,
by (2.18)

LT =
∫ √(

∂2f

∂v2

)

T

dv =
∫ √

1
RT

(
∂f

∂v

)2

T

dv =
∫ √

1
RT

∣∣∣∣

(
∂f

∂v

)

T

∣∣∣dv

=
√

1
RT

∫
|p|dv =

√
1

RT
W. (3.14)

Let’s consider, now, the case n = 2 in which the only non-zero virial
coefficient is B.

Corollary 2. Let

p = RT

v
+ RT B

v2
. (3.15)

Then, along isotherms,

LT = 1√
RT

W +
√

RT



ln




1+ B

v2
+
√

1+ 2B
v2

1+ B
v1

+
√

1+ 2B
v1



−B

(
v2 −v1

v1v2

)

− 2

(√

1+ 2B

v2
−
√

1+ 2B

v1

)]
(3.16)

= 2
√

RT

[
ln

(√
(v2 +2B)+√

v2√
(v1 +2B)+√

v1

)
−
(√

1+ 2B

v2
−
√

1+ 2B

v1

)]
, (3.17)

where the length is evaluated from volume v1 to v2 and work is given by
W =RT [ln(

v2
v1

)+B(v2 −v1/v1v2)].

Proof. From (3.5) and (3.6) after some calculation.
Expression (3.17) might be re-written in a more compact form by set-

ting ρi =
√

1+ 2B
vi

with i =1,2. Then we get

LT =2
√

RT

[
ln
(√

v2

v1

(
ρ2 +1
ρ1 +1

))
− (ρ2 −ρ1)

]
.
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Let’s, now, denote by Wideal, the work done on an Ideal gas (see
Corollary 1). It is interesting to note that, since W = RT [ln(v2/v1) +
B(v2 −v1/v1v2)] = Wideal + RT B(v2 −v1/v1v2), then expression (3.16) can
be written as

LT = 1√
RT

Wideal +
√

RT



ln




1+ B

v2
+
√

1+ 2B
v2

1+ B
v1

+
√

1+ 2B
v1





−2

(√

1+ 2B

v2
−
√

1+ 2B

v1

)]

= LT
ideal +

√
RT



ln




1+ B

v2
+
√

1+ 2B
v2

1+ B
v1

+
√

1+ 2B
v1



−2

(√

1+ 2B

v2
−
√

1+ 2B

v1

)



(3.18)

It is evident that the second term on the right side of expression
(3.18) gives the contribution to the thermodynamic length of an isother-
mal quasi-static “real” process between two states due to inter-particle
interaction.

Remark 4. This result would help us to understand what thermody-
namic length is along isotherms for TD systems in which some interac-
tion is occurring. Note that, if B = 0, like in the corollary 1, then length
reduces to (3.11).

APPENDIX A

We include the case n=3 as a curiosity. We have the following

Corollary 3. Let

p = RT

v
+ RT B

v2
+ RT C

v3
(A.1)
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Then, along isotherms,

LT =
√

RT



ln





√
v2

2 +2Bv2 +3C +v2 +B
√

v2
1 +2Bv1 +3C +v1 +B





+ B√
3C



ln




√

3C

√
v2

2 +2Bv2 +3C −Bv2 −3C

√
3C

√
v2

1 +2Bv1 +3C −Bv1 −3C





− ln
(

v2

v1

)

−
(√

1+ 2B

v2
+ 3C

v2
2

−
√

1+ 2B

v1
+ 3C

v2
1

)

 (A.2)

4. CONCLUSIONS

It would be interesting to see what thermodynamic length would be
along isotherms for different values of B and C or what the physical
meaning of length is, since, for n=2 above, work is just a part of it. For
example, the Van der Waals gas would be a good starting point.
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